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ABSTRACT

Empirical power-law relations between the equivalent radar reflectivity factor Ze and the slope parameter

of the gamma function L (i.e., L5 cZd
e ; used to describe ice hydrometeor size distributions) are derived. The

L parameter can also be considered as a size parameter since it is proportional to the inverse of the hydro-

meteor characteristic size, which is an important geophysical parameter describing the entire distribution.

Two datasets from two-dimensional microphysical probes, collected during aircraft flights in subtropical and

midlatitude regions, were used to obtain L by fitting measured size distributions. Reflectivity for different

radar frequencies was calculated from microphysical probe data by using nonspherical-particle models. The

derived relations have exponent d values that are approximately from20.35 to20.40, and the prefactors c are

approximately between 30 and 55 (L: cm21; Ze: mm6m23). There is a tendency for d and c to decrease when

radar frequency increases from Ku band (;14GHz) toW band (;94GHz). Correlation coefficients between

Ze and L can be very high (;0.8), especially for lower frequencies. Such correlations are similar to those for

empirical relations between reflectivity and ice water content (IWC), which are used in many modeling and

remote sensing applications. Close correspondences of reflectivity to both L and IWC are due to a relatively

high correlation between these two microphysical parameters. Expected uncertainties in estimating L from

reflectivity could be as high as a factor of 2, although estimates at lower radar frequencies are more robust.

Stratifying retrievals by temperature could result in relatively modest improvement of L estimates.

1. Introduction

Empirical relations between the equivalent radar

reflectivity factor (hereinafter just reflectivity) Ze and

cloud/precipitation ice water content (IWC) have

been long used in different remote sensing and model

applications. Such relations are typically sought in a

power-law form

IWC5 aZb
e , (1)

where empirically derived values of the exponent

b are usually between 0.4 and 0.7 for radar frequencies

below ;36GHz (when Ze is in linear units:mm6m23),

and the prefactor coefficient a varies over a much wider

range. Sometimes a is considered to be temperature

dependent (e.g., Hogan et al. 2006). Even though mul-

tisensor retrievals (e.g., Shupe et al. 2016) or retrievals

that use multiple radar variables (e.g., Matrosov et al.

2002; Maahn and Loehnert 2017) are potentially more

accurate, the utility of empirical relations such as Eq. (1)

is still important in many practical situations in which

only radar reflectivity measurements are available

(e.g., when observing optically thick ice clouds with

spaceborne radars; Matrosov and Heymsfield 2008).

The most common approach for deriving empirical

IWC–Ze relations is performing a regression between

calculated or directly measured bulk IWC (e.g.,

Heymsfield et al. 2016) and reflectivity values calculated

from in situ cloud/precipitation two-dimensional (2D)

microphysical-probe particle size distributions (PSDs).

The reflectivity values are calculated by using some
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theoretical model that assumes particle shapes and

size-dependent masses. On rare occasions, actual radar

reflectivity measurements are coordinated with in situ

microphysical measurements so that the corresponding

relations can be drawn from independent sets of data.

Such relations, however, are often within the variability

range of relations derived using the common approach

(e.g., Protat et al. 2016).

The correspondence between IWC andZe depends on

the details of the PSD. One of the most important PSD

parameters is the size parameter that characterizes

particle sizes in some mean sense. Variability of this

parameter influences the data spread in the IWC–Ze

relations and thus affects the reflectivity-based retrieval

errors of IWC. The size parameter is also an important

geophysical variable that is usually considered as a

retrieval unknown when applying relations such as

Eq. (1). There is, however, a significant correlation be-

tween the characteristic sizes of ice-particle populations

(e.g., mean, median, or effective sizes) and radar re-

flectivity (e.g., Matrosov 1997).

The objectives of this study include evaluations ofmean

correspondences between radar reflectivity and different

PSD parameters, emphasizing one that describes the

characteristic particle size, which represents the entire

distribution, assessing a degree of correlation between Ze

and different PSD parameters, and comparing it with that

between Ze and IWC. The correspondences between the

size parameter and reflectivity expressed as empirical

power-law relations in a way that is similar to IWC–Ze

relations can be potentially used for practical applica-

tions, including remote sensing of ice microphysical

parameters. Interrelations between the size parameter

and IWC are also evaluated. These interrelations are

responsible, in part, for correspondences of these micro-

physical parameters to reflectivity.

2. Correspondences between reflectivity and PSD
parameters

Experimentally measured PSDs are often fitted by

analytical functional forms because such forms are

convenient for modeling studies and remote sensing

applications. The most common form is the one that

describes the particle concentrations N by the gamma

function in terms of the major particle dimensions

D as inferred from 2D in situ microphysical probes

(e.g., Kosarev and Mazin 1991):

N5N
0
Dm exp(2LD) , (2)

where N0, m, and L are the intercept, the dispersion

(width) parameter, and the distribution slope, respectively.

SlopeL can also be considered as the PSD size parameter,

which describes the characteristic particle size of the entire

size distribution, because it is proportional to the inverse

of median volume particle size Dmv. For nontruncated

gamma-function distributions assuming similarity of

shapes of particles of different sizes (e.g., Bringi and

Chandrasekar 2001):

L’ (3:671m)/D
mv
. (3)

Exponential size distributions, which are often used in

practice, are a special case of the gamma-function PSDs

when m 5 0. Field et al. (2007) showed that exponential

distributions often provide a good approximation for

higher PSD moments.

Given that L is a microphysical parameter that is

useful for many model and remote sensing applications,

it is instructive to assess whether practical power-law

relations of the type that are used to derive IWC from

radar reflectivity measurements can be suggested for

estimations of L, that is,

L5 cZd
e . (4)

Figures 1a and 1b show scatterplots of the gamma-

function slope parameter L versus the Ka-band

(;35GHz) radar reflectivity (Ze . 220dBZ) as derived

from microphysical in situ datasets obtained during

two aircraft-measurement field experiments that were

conducted in different environments. Procedures for

deriving L, m, and N0 from experimental PSDs are

described by Heymsfield et al. (2002). The Ka-band fre-

quencies are the most common operational frequencies of

cloud radars, and they are utilized in many ground-based

radars worldwide, including those at different facilities

(e.g., Southern Great Plains in Oklahoma, Barrow and

Oliktok Point in Alaska, and Azores) of the U.S. De-

partment ofEnergyAtmosphericRadiationMeasurement

program (Mather and Voyles 2013) and more recently in

radar observations from space (Hou et al. 2014).

Themicrophysical sample data for this study come from

the Global Precipitation Measurement (GPM) Cold

Season Precipitation Experiment (GCPEX), which was

conducted in Canada during January–February of 2012

(Skofronick-Jackson et al. 2015), and the Cirrus Regional

Study of Tropical Anvils and Cirrus Layers–Florida-Area

Cirrus Experiment (CRYSTAL-FACE), which was con-

ducted in the summer of 2002 (Heymsfield et al. 2005).

The GCPEX observations were primarily from stratiform

ice- and mixed-phase clouds (including precipitating

clouds), although some lake-effect snowbands were sam-

pled. The CRYSTAL-FACE data were primarily from

summertime ice clouds associated with convective cloud

outflow. The GCPEX data were collected at generally
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warmer temperatures than were the CRYSTAL-FACE

data (average ambient air temperatures were approxi-

mately 2148 and 2338C for these datasets, respectively).

There are 17773 and 11478 samples in the Fig. 1 GCPEX

and CRYSTAL-FACE scatterplots, respectively.

Two-dimensional particle probes for collecting cloud

microphysical information were used in both cases

(Heymsfield et al. 2005, 2016). Shattering of large particles

on the leading surfaces of 2D microphysical probes can

cause artifacts that result in enhanced concentrations of

small ice. To alleviate shattering effects, such artifacts were

objectively removed on the basis of particle interarrival

times and Poisson statistics (Heymsfield et al. 2010).

Radar reflectivity values were calculated using the

observed PSDs, estimated ice-particle mass from direct

or calculated-from-PSD IWC data, and the T-matrix

approach for the oblate spheroidal particles oriented

on average with their major dimensions in the horizontal

plane (Matrosov 2007) and assuming a 108 standard de-

viation from this preferential orientation (e.g., Matrosov

et al. 2005). A zenith/nadir-viewing radar geometry and a

particle aspect ratio of 0.6 were assumed. Assumptions of

such aspect ratios and small deviations from the prefera-

ble horizontal orientations were previously shown to

satisfactorily explain dual-wavelength and polarimetric

radar measurements of ice hydrometeors (e.g., Hogan

et al. 2012; Matrosov 2015).

Calculating radar reflectivity requires an assumption

of individual particle mass–size (m–D) relations. These

relations are generally presented in a power-law form (i.e.,

m 5 fDg). The exponent in these relations is typically

close to 2 while the coefficient varies much more

(Heymsfield et al. 2013). For the CRYSTAL-FACE

dataset, the coefficient f was adjusted on the basis of

measurements of the bulk mass from the counterflow

virtual impactor (CVI) probe as described by Matrosov

and Heymsfield (2008). Direct collocated CVI measure-

ments were not available during the GCPEX campaign.

The GCPEX reflectivity and IWC data were derived

using them–D relation (g5 2.1; f5 0.00528 in cgs units;

f 5 0.0837 in SI units) that was found to provide the best

agreement between the total mass obtained by integrating

PSD data and that from concurrent CVI measurements

in a wide range of ice clouds (Heymsfield et al. 2016).

FIG. 1. Scatterplots of Ka-band radar reflectivity vs (a),(b) the PSD slope parameter L and (c),(d) median volume particle size as derived

from the (left) GCPEX and (right) CRYSTAL-FACE microphysical data.
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As seen from the data in Figs. 1a and 1b and Table 1,

there is good correlation between L and radar re-

flectivity. TheL–Ze relations for datasets from both field

campaigns are relatively close to each other. It is also

evident from Figs. 1a and 1b that, on average, L values

for the GCPEX dataset are smaller than those for

CRYSTAL-FACE (mean values are approximately 49

and 74 cm21, respectively). This indicates generally

larger particle populations during the GCPEX flights.

Table 1 shows coefficients of the best-fit power-lawL–Ze

relations at Ka band from Fig. 1 and also for corre-

sponding relations at Ku (;14GHz) and W (;94GHz)

radar frequencies, which are also common frequencies

used in meteorological radars. A Ku-band frequency

(in addition to a Ka-band frequency) is used in the dual-

wavelength spaceborne GPM radar, and W-band cloud

radars are also now increasingly used for ground-based

(e.g., Mather and Voyles 2013) and airborne [and

also CloudSat spaceborne (e.g., Tanelli et al. 2008)]

measurements of atmospheric hydrometeors.

Table 1 also presents correlation coefficients and

normalized mean absolute difference (NMAD) values

of L estimates derived from the best-fit relation:

NMAD5 hjX
o
2X

b
ji=hjX

o
ji3 100%, (5)

where Xo and Xb are the values of variable X (in this

case X is L) from the microphysical probes and from

the best-fit relations and angle brackets indicate data

averaging for a particular dataset. The NMAD values

characterize the quality of the best-fit approximation

because they describe the data scatter around this

approximation. These values can be considered to be a

measure of the uncertainty of L retrievals if reflectivity

is well known. As seen from Table 1, these values gen-

erally increase with frequency, which is, in part, due to

decreasing sensitivity of reflectivity to particle sizes as a

result of effects from non-Rayleigh scattering. Errors in

reflectivity measurements and particle models would

introduce an additional retrieval uncertainty.

Scattering at Ku-band frequencies is for themost part in

the Rayleigh-scattering regime for particles that are

smaller than ;3.5mm. Electromagnetic scattering at W

band is essentially non-Rayleigh for particles larger than

;0.5mm. The spheroidal-shape model has some limita-

tions for calculating backscatter at W band for very large

particles (e.g., Leinonen et al. 2012). As shown in Hogan

andWestbrook (2014), however, when integrated over the

PSD the backscatter differences in the reflectivity from

the spheroidal model and that from more sophisticated

particle models are often comparable to the differences

caused by a reasonable uncertainty in aspect ratios for the

same particle-shape model (e.g., 0.5 vs 0.6).

In addition to the L and Ze relations, Figs. 1c and 1d

show scatterplots between Dmv [as in Eq. (3)] and

reflectivity. The corresponding power-law correla-

tion coefficients between these variables are somewhat

smaller (i.e., ;0.78–0.80) than those for the L and Ze

pair. This is, in part, due to the variability in m. On

average,Dmv values for the CRYSTAL-FACE data are

substantially smaller than for theGCPEX data, which is,

in part, caused by the differences in m values from these

observational datasets. For particle populations with

size-dependent bulk density, median mass sizes, which

are also used for describing the entire distributions, are

generally smaller than Dmv. For values of m between

0 and 1 and the mass–size relation exponent g ’ 2,

the ratio of median volume and median mass sizes is

approximately between 0.73 and 0.78 if Dmv is greater

than ;0.05 cm (Matrosov et al. 1995).

Although the correlation between L and Ze is rela-

tively high, it is not so for relations between reflectivity

and other PSD parameters. Figure 2 shows scatterplots

between m, which is dimensionless, and Ze. Although

there is some trend for m to diminish when reflectivity

increases, the corresponding correlation coefficient is

only 0.43 for the GCPEX data and 0.37 for the

CRYSTAL-FACE data. Values of m for both datasets

generally vary in a relatively small dynamic range

between 22 and 2.

The units of the gamma-function parameter N0 de-

pend on m, and this parameter has a very large range

of variability, which makes it inconvenient for inter-

comparisons and characterizing particle size distribu-

tions. Often, a normalized intercept parameter of the

exponential (i.e., when m is forced to be 0) distribution is

considered for practical applications (e.g., Bringi and

Chandrasekar 2001). Parameter N0(m 5 0) has units of

TABLE 1. Prefactor c and exponent d in mean relations of the form of Eq. (4) (Ze: mm6m23; L: cm21). Also given are the power-law

correlation coefficient cc and the NMAD of the power-law approximations.

GCPEX dataset CRYSTAL-FACE dataset

c d cc NMAD c d cc NMAD

Ku band 47.1 20.36 0.85 48% 54.1 20.36 0.90 34%

Ka band 43.2 20.39 0.81 51% 48.1 20.40 0.86 37%

W band 28.1 20.40 0.60 62% 32.9 20.42 0.70 49%
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length24 and a smaller dynamic range of variability. It is

widely used for describing raindrop size distributions.

Figure 3 shows scatterplots of N0(m 5 0) versus radar

reflectivity for the two microphysical datasets that are

considered in this study. Power-law correlation coeffi-

cients between N0(m 5 0) and Ze are only 0.46 and 0.28

for the GCPEX and CRYSTAL-FACE data, respec-

tively. TheN0(m5 0) values are noticeably larger for the

CRYSTAL-FACE dataset. Since m values for this

dataset are generally smaller, it indicates larger relative

fractions of smaller particles when compared with the

GCPEX microphysical samples. This is consistent

with generally larger L values observed during the

CRYSTAL-FACE campaign and is due to the convec-

tive nature of the clouds that were sampled.

The GCPEX and CRYSTAL-FACE microphysical

data were also used to derive ice water content–

reflectivity correspondences, which are shown in Fig. 4.

The presented IWC values from CRYSTAL-FACE

were derived from the CVI measurements, whereas

GCPEX IWC values were calculated using the PSD, as

described above. Power-law correlation coefficients

between IWC and Ze are 0.86 and 0.73 for GCPEX and

CRYSTAL-FACE measurements, which are compara-

ble to those betweenL andZe. The prefactor coefficients

in the best-fit power-law IWC–Ze relations differ con-

siderably between the datasets, even though both fits are

within the variability range of such relations derived from

different microphysical datasets (e.g., Matrosov 1997;

Hogan et al. 2006). The differences in the prefactor values

are in part due to the fact that particles were on average

larger (as evident from smallerL values) during GCPEX

flights when compared with those observed during

the CRYSTAL-FACE campaign. Larger particle pop-

ulations result in smaller prefactor values in the power-

law IWC–Ze relations (Atlas et al. 1995).

Overall, it can be concluded from the data presented

that correlations between reflectivity and the size pa-

rameter and also between reflectivity and IWC are no-

ticeably higher than those between reflectivity and other

PSD parameters (i.e., m andN0). Thus, radar reflectivity

measurements are more promising for estimating L and

FIG. 3. As in Fig. 2, but for the PSD parameter N0.

FIG. 2. Scatterplots between the PSD m parameter and Ka-band radar reflectivity as derived from the (a) GCPEX and (b) CRYSTAL-

FACE microphysical data.
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IWC than other PSD characteristics. A relatively high

correlation between IWC and Ze is widely used in many

remote sensing and model applications, which is not

the case for statistical relations between hydrometeor

characteristic size parameter and reflectivity.

3. Consistency of L–Ze and IWC–Ze relations

The fact that both IWC and L are relatively well

correlated with radar reflectivity is not surprising be-

cause Ze is a strong function of both the total ice mass

and the characteristic particle size of the distribution

(e.g., Atlas et al. 1995). There is also a significant in-

terrelation between IWC and L as higher values of IWC

are typically observed from in situ samples of larger

particle populations and at warmer temperatures. This

results in the fact that L–Ze and IWC–Ze empirical re-

lations are generally interdependent.

This interdependency is further illustrated in Fig. 5,

which depicts the scatterplots between IWC and L from

the microphysical in situ measurements. The data-

scatter areas are somewhat similar for the both the

GCPEX and CRYSTAL-FACE data. The L–Ze and

IWC–Ze best-fit power-law relations for each dataset

(Figs. 1a and 4a and Figs. 1b and 4b, respectively) were

combined to derive IWC–L consistency relations, which

are shown in Fig. 5 by gray lines. Also shown in Fig. 5 are

best-fit power-law relations (black lines) obtained by

directly regressing L and IWC estimates from the

microphysical probes.

Overall, both the consistency relations and power-law

best-fit IWC–L relations in Fig. 5 describe the observed

correspondence between these two variables well,

although the NMAD values for the latter relations

(71% and 69% for GCPEX and CRYSTAL-FACE data,

respectively) are, as expected, lower than for the former

relations (i.e., 90% and 74%, respectively). Deriving two

variables (i.e., L and IWC) from one Ze measurement

becomes only possible because there is a significant

interrelation between these two microphysical variables.

FIG. 4. As in Fig. 2, but for the IWC.

FIG. 5. Correspondence between the PSD slope parameter L and IWC (black lines) as inferred from the (a) GCPEX and (b) CRYSTAL-

FACE microphysical data. The gray lines show the consistency relations derived by combining the L–Ze and IWC–Ze best power-law fits.
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4. Temperature dependence of L–Ze relations

Figure 6 shows scatterplots between L and environ-

mental air temperature T. Comparing Figs. 1 and 4 re-

veals that the data scatter is considerably less in theL–Ze

relations than in theL–T relations, even though there are

obvious general trends of decreasing L (i.e., increasing

characteristic particle size of the PSD) with increasing

temperature. The NMAD values of the exponential best

fits shown in Fig. 6 are around 66% and 72% for the

GCPEX and CRYSTAL-FACE datasets, respectively.

The temperature trends of L in these datasets, however,

are somewhat different, with the GCPEX dataset

showing a greater sensitivity to temperature and the data

scatter for the CRYSTAL-FACE data being particularly

wide. It indicates that the temperature only might not

be a very robust indicator of characteristic size of particle

populations. For reference, mean L–temperature trends

from a study by Heymsfield et al. (2013) are also shown

in Fig. 6.

The temperature influence on the empirical L–Ze re-

lations was further investigated by constructing best

power-law fits in several temperature intervals. The

corresponding results are shown in Fig. 7. Overall, for

the same reflectivity values, progressively smaller par-

ticle populations are seen as temperatures become

colder. For the CRYSTAL-FACE dataset, differences

among L–Ze relations for different temperature in-

tervals are smaller relative to GCPEX samples.

Although the meanL–Ze relations for both datasets are

relatively close, it is not generally so when comparing

corresponding relations for different temperature in-

tervals. For a particular dataset, applying temperature-

dependent L–Ze relations instead of the mean of such

a relation results in modest improvement in L estimates.

For the GCPEX data, NMAD values of temperature-

tunedKa-band reflectivity-basedL estimates are generally

between 35% and 44% as compared with approximately

51% (see Table 1) when the mean relation is used. For

FIG. 6. Scatterplots of the ambient temperature vs the PSD slope parameterL as derived from the (a) GCPEX and (b) CRYSTAL-FACE

microphysical data. Mean power-law fits from Heymsfield et al. (2013) are also shown.

FIG. 7. Best-fit power-law L–Ze Ka-band relations stratified by the temperature intervals for the (a) GCPEX and

(b) CRYSTAL-FACE microphysical data.
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the CRYSTAL-FACE dataset, the use of temperature-

dependent relations instead of themean one results only in

small changes (typically within a few percentage points, in

terms of the NMAD). The use of a ‘‘wrong’’ temperature-

dependent relation can change estimates of L by about

30% or so. Relative changes of NMAD values when using

temperature-dependent L–Ze relations for other radar

frequencies are similar.

5. Uncertainties of L–Ze relations

NMAD values represent the data scatter around

the best-fit relations. This data scatter contributes to

the uncertainty of L estimates from reflectivity mea-

surements. Other sources of retrieval uncertainties are

reflectivity errors, including the uncertainties of the

particle model used for calculating reflectivity. An as-

sumed particle aspect ratio and the T-matrix spheroidal-

approximation approach represent major sources of

model uncertainties, which are more pronounced at

higher radar frequencies (i.e., W band).

As mentioned in section 2, differences between the

spheroidal approximation and more complex particle

models atW band are comparable to the differences due

to different assumptions about particle aspect ratio

(e.g., 0.5 vs 0.6). Note also that actual aspect ratios can

be somewhat smaller than those inferred from 2D

projected images. Underestimations of W-band re-

flectivities of particle populations calculated using the

spheroidal model and the T-matrix approach can be as

much as 2 dB or so for higher reflectivities of ;10dBZ

(Hogan and Westbrook 2014). Only about 5% of

data points from the GCPEX and CRYSTAL-FACE

campaigns, however, result in W-band reflectivities

(which are appreciably smaller than lower-frequency

reflectivities) of greater than 10 dBZ. Two-dimensional

projected images of typical ice particleswithmost common

irregular shapes indicatemean projectional aspect ratios of

about 0.6 and corresponding standard deviations of 0.1 or

so (Korolev and Isaac 2003). The T-matrix modeling (not

shown) indicates that a 0.1 aspect-ratio uncertainty would

result in approximately 0.5-dB changes in W-band re-

flectivity for constant mass PSDs with typical average

values of L 5 50cm21 and m 5 0.

In addition, an approximately 20% uncertainty in the

particle mass–size relation would result in about 1.5-dB

errors of calculated reflectivity (Hammonds et al. 2014).

Given the aforementioned reflectivity uncertainties due to

the particle model and an independence of errors due to

the particle model and uncertainties in the m–D relation,

a conservative uncertainty value of 3dB in W-band re-

flectivities can be assumed. Since a typical exponent in

theL–Ze relations is about20.40, a factor-of-2 (i.e., 3dB)

reflectivity uncertainty would correspond to about 30%

uncertainty in L. If, further, this 30% uncertainty and the

NMAD scatter of;60% are assumed to be independent,

the total L error of ;70% can be estimated as a square

root of the sum of squares of individual contributions.

Errors of estimating L at lower radar frequencies are

expected to be smaller relative to the W band because

of generally lower NMAD values for the corresponding

L–Ze relations and smaller uncertainties of the

spheroidal-particle reflectivity model.

6. Conclusions

Aircraft-based microphysical sampling data were

used to investigate statistical relations between the ice

hydrometeor size distribution parameters and radar

reflectivity factor Ze. The datasets were collected during

two field campaigns conducted in different environ-

ments. The GCPEX campaign was conducted in win-

tertime clouds and precipitation during flights over

Canada, and the CRYSTAL-FACE campaign flights

were performed in Florida primarily in summertime

high ice layers associated with convective cloud outflow.

The datasets included here are large, each containing

more than 10 000 in-cloud flight samples. A summary of

the results is given here—the aircraft sampling datasets

are available from the authors upon request.

A relatively robust correspondence was found between

Ze and an ice hydrometeor size distribution slope pa-

rameter L, which is proportional to the inverse of the

particle characteristic size and describes the entire PSD.

The empirical relations between these two parameters

were presented using power-law fits. The correlation

coefficients between Ze and L were about 0.8 (0.6–0.7 at

W band). This is comparable to those for empirical

relations between reflectivity and ice water content. The

fact that both microphysical parameters (i.e., IWC andL)
are strongly related to the radar reflectivity is explained

by the close correspondence between these two micro-

physical parameters. In the typical case, larger particle

populations are associated with higher ice water contents.

The mean power-law L–Ze relations for the datasets

from the GCPEX and CRYSTAL-FACE field projects

are relatively close to each other, and the normalized

absolute differences that characterize the data scatter

around the best-fit approximations are typically be-

tween 32% and 60%. The data scatter increases with the

radar frequency. For a given microphysical dataset,

stratifying these relations on the basis of the ambient air

temperature could provide modest improvement, re-

sulting in relatively small changes in NMAD values.

The findings of this study suggest that L–Ze relations

can be as robust as IWC–Ze relations, which are used
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extensively in numerous studies ranging frommicrophysical

modeling to remote sensing.EmpiricalL–Ze relations could

also be useful in many practical applications—for example,

when inferring the characteristic size of the ice hydrome-

teors is of particular interest. Since the characteristic size

of a distribution can be used to assess the particle ensemble

mean density (e.g., Matrosov 2015), such applications

can include interpretations of radar polarimetric variables

whose dependence on hydrometeor shape is strongly

influenced by particle density. Unlike for the Ze and L
pair, correlations between radar reflectivity and other PSD

parameters for considered datasets were not strong.

Expected uncertainties of estimating the size parameter

L from radar reflectivity measurements are determined by

the data scatter around the best-fit relations and reflectivity

uncertainties, including those of the particle model used for

calculating reflectivities. With reasonable assumptions for

the error contributions noted above, the total estimation

uncertainties can be expected to be as high as ;70%

on average (or roughly as a factor of 2) for the higher-

frequency radar measurements. Estimates at lower radar

frequencies might be more robust because there is less in-

fluence of non-Rayleigh scattering and smaller sensitivity to

particle shapes. More studies of the correspondence be-

tween the L parameter and radar reflectivity at different

frequency bands (including coincident directmeasurements

of reflectivity) are needed in the future to better understand

the variability in PSD size parameter–reflectivity relations.
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